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1. Introduction

D-branes have proved to be an extremely useful tool in constructing models of particle

physics and cosmology (for recent reviews, see e.g. [1, 2]). In type IIB string theory, D3-

branes play a particularly distinctive role. A D3-brane that fills spacetime is pointlike in the

internal space, and so the configuration space of the D3-brane is the entire compactification

manifold. Moreover, in a no-scale flux compactification [3, 4], D3-branes feel no potential

(to leading order in α′ and gs), and thus the D3-brane moduli space can in fact be identified
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with the internal space. In contrast, higher-dimensional branes wrapping various cycles

have more complicated configuration spaces, and also generically receive potentials from

the flux background. As the most mobile spacetime-filling D-branes, D3-branes provide a

key ingredient in models of brane inflation [5, 6]. The idea of brane inflation is to exploit

the mobility of D3-branes and to look for a weak force that slightly lifts the D3-brane

moduli space, producing a relatively flat potential on the internal manifold. The inflaton

could then be identified as the D3-brane position.

However, in a compactification in which the Kähler moduli are stabilized by nonper-

turbative effects, as described in [7], the no-scale structure is broken and D3-branes no

longer enjoy a no-force condition. A D3-brane at a generic point then breaks supersymme-

try spontaneously, by an F-term associated with the nonperturbative superpotential. The

D3-brane feels a force from nonperturbative effects that confines it to certain restricted

loci where the F-term vanishes and supersymmetry is restored. As we shall see, there are

generically enough constraints to reduce the space of D3-brane vacua to a set of isolated

points, but many concrete models preserve isometries, so that associated moduli spaces

are possible as well. The effects of the moduli-stabilizing F-term on D-brane inflation have

recently been explored in [8 – 10]; given the ubiquity of D3-branes in the construction of

Standard-like models [1], finding the D3-branes vacua in stabilized compactifications is

highly relevant for particle physics considerations as well.

In this paper we study the general conditions for supersymmetric D3-brane vacua in

moduli-stabilized type IIB flux compactifications with a single Kähler modulus. These

conditions depend on the compactification geometry and on the embedding of the moduli-

stabilizing branes. Furthermore, we study a number of explicit examples in the warped

deformed conifold [11], characterized by particular supersymmetric embeddings of the D7-

branes (or Euclidean D3-branes). In any given compact model, one or more of the possible

supersymmetric embeddings might generate a nonperturbative superpotential; in this paper

we assume such a superpotential is generated and study the consequences. We consider

two broad classes of embeddings in the local throat model, and obtain moduli spaces of

real dimension zero, one, and two.

Brane/antibrane inflation relies on the final annihilation of the pair as an exit mech-

anism. Correspondingly, it is a natural question whether the D3-branes are confined to

the same loci by the nonperturbative effects as the D3-branes – if it were otherwise, a new

potential could interfere with the end of inflation. We show that D3-branes and D3-branes

are in fact localized to the same loci on the tip of the warped deformed conifold.

The angular directions in the warped deformed conifold are protected by isometries,

making them potentially attractive as inflationary directions. Moreover, the warping iso-

lates the bottom of the throat from the bulk of the geometry and raises the possibility of

flattening out the brane Coulomb potential. We investigate this possibility of D3-brane

inflation corresponding to motion along an approximately preserved moduli space at the

tip of the warped deformed conifold. We find that although the warp factor naively flattens

the potential, it also compresses the field space, and consequently angular inflation is not

a viable mechanism.

The organization of this paper is as follows. In section 2 we briefly review warped
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flux compactifications of type IIB string theory. In section 3 we determine the equations

for supersymmetric D3-brane vacua in the presence of moduli stabilization forces in all

generality, and in section 4 we apply these results to a number of explicit examples on

the S3 at the tip of the warped deformed conifold. In section 5 we study the analogous

problem for D3-branes and find that D3-branes and D3-branes are confined to the same loci

on the tip. In section 6, we enumerate all possible forces on branes at the tip of the throat,

and examine whether angular motion of a brane/antibrane system there can significantly

inflate, obtaining a negative result. We conclude in section 7. Some details are relegated

to the appendices.

2. Review of type IIB compactifications

We consider a warped compactification of type IIB string theory down to four dimensions,

with metric ansatz

ds2 = e2A(y)e−6u(x)gµνdxµdxν + e2u(x)e−2A(y)g̃mndymdyn , (2.1)

where eA(y) is the warp factor and e2u(x) is the Weyl rescaling required to decouple the

overall volume mode from the four-dimensional graviton. We take the “unwarped” metric

g̃mn on the compact space to be Calabi-Yau;1 we will also make use of the “warped” metric

gmn ≡ e−2Ag̃mn. The self-dual five-form flux F̃5 = ∗F̃5 is

F̃5 = (1 + ∗) dα(y) ∧√−g4 dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.2)

with α(y) a function on the compact space. The NSNS and RR three-forms H3, F3 are

combined with the complex RR axion/dilaton τ ≡ C0 + ie−φ into the complex combination

G3 ≡ F3 − τH3 , (2.3)

and we will find it useful to define the linear combinations

Φ± ≡ e4A ± α , G± ≡ iG3 ± ∗6G3 , (2.4)

where the six-dimensional Hodge star ∗6 is the same using either g̃mn or gmn.

In what follows we assume for simplicity a constant dilaton τ = i/gs. The Einstein

equation and five-form equation of motion can be combined into the pair of equations

−∇̃2(Φ±)−1 =
g2
s

96
˜|G±|

2
+ 8π4gs

∑

i±

δ6(y − yi±)√
g̃6

, (2.5)

where i± indexes the D3-branes/D3-branes and the various tildes indicate that all contrac-

tions are with respect to the unwarped metric. The equations of motion for the three-forms

are

d(Φ+G−) = d(Φ−G+) . (2.6)

1In more generality, when 7-branes are present, the unwarped metric/dilaton system corresponds to an

F-theory compactification on a Calabi-Yau fourfold.
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2.1 Imaginary self-dual warped throat

We will be concerned with backgrounds that are to leading order of the Giddings-Kachru-

Polchinski (GKP) [3] type,

G− = Φ− = 0 . (2.7)

which in particular involve fluxes that are imaginary self-dual.2 This important class of

solutions includes the Klebanov-Strassler (KS) warped throat [11] arising as part of a

compact geometry, as described in [3].

To construct a KS throat, we begin with a conifold singularity with corresponding

three-cycles A and B and complex structure modulus ǫ2 =
∫
A Ω, with Ω the holomorphic

three-form.3 The complex structure modulus may then be stabilized by fluxes
∫

A
F3 ≡ M ,

∫

B
H3 ≡ −K , (2.8)

at an exponentially small value [3]:

ǫ ∼ e−πK/gsM . (2.9)

For ǫ ≪ 1, the resulting geometry is well-described by a KS throat [11] over which the

warp factor is strongly varying, attached to the rest of the compact space where the warp

factor is mostly constant. We will be working in the throat region, whose classical solution

is known precisely up to corrections from the bulk of the geometry. (In section 6.1 we will

estimate the influence of these bulk corrections, following [12].)

The unwarped metric is that of the deformed conifold, which comes to a smooth end

at what we will call the “bottom” or the “tip” of the throat. Far from the bottom but still

in the throat, the metric is approximately that of the ordinary conifold,

g̃mndymdyn ≈ dr2 + r2ds2
T 1,1 for r ≫ ǫ2/3 , (2.10)

where ds2
T 1,1 is the canonical metric on the five-dimensional Einstein space T 1,1, which is

topologically S3 × S2. The warp factor in this region has the form

e−4A = 2(Φ+)−1 =
27π

4r4
(gsMK) + · · · , (2.11)

where the dots denote logarithmic corrections, and we have set α′ = 1. At the tip of

the throat the S2 in T 1,1 shrinks to zero size while the S3 remains finite, and the metric

becomes

g̃mndymdyn ≈ ǫ4/3(dτ2 + τ2dΩ2
2 + dΩ2

3) , (2.12)

where we may parameterize the metric on the three-sphere as

dΩ2
3 = (dψ + cos θdφ)2 + dθ2 + sin2 θdφ2 . (2.13)

2The relations (2.7) will be corrected by Kähler moduli stabilization effects and other higher-order terms,

and are explicitly violated by any D3-branes.
3Often one writes ǫ

2 = z, but we reserve the letter z for something else.
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The radial coordinate τ is related to r by

r3 = ǫ2 cosh τ , (2.14)

and the tip is at r3 = ǫ2, τ = 0; the warp factor there is

a0 ≡ eA0 ∼ ǫ2/3

(gsM)1/2
, (2.15)

up to numerical factors, and is constant over the S3. Hence in the warped compact metric

the powers of the small number ǫ cancel, leaving for the total metric near the bottom τ ≈ 0,

ds2 =
ǫ4/3

gsM
gµνdxµdxν + (gsM)(dτ2 + τ2dΩ2

2 + dΩ2
3) , (2.16)

where we have neglected the Weyl factor e2u(x) for simplicity. Hence the three-sphere has

radius R2
S3 = gsM in string units. A necessary condition for the supergravity approxima-

tion to hold is for this radius to be large, gsM ≫ 1.

2.2 Four-dimensional action

The effective theory for this warped compactification is a four-dimensional N = 1 su-

pergravity. The scalar fields of the effective theory fall into two categories: closed string

moduli, i.e. the Kähler moduli, complex structure moduli, and dilaton; and open string

moduli, including the positions of any D-branes, which for us will be D3-branes and D7-

branes.

The flux superpotential,

W0 ≡
∫

G3 ∧ Ω , (2.17)

gives rise to a potential for the dilaton and for the complex structure moduli. In addition,

the F-theory generalization of (2.17), which includes 7-brane worldvolume fluxes as well,

can stabilize the positions of D7-branes. We will make the assumption throughout that

the flux-induced potential has stabilized all these moduli.

The remaining closed string moduli are then the Kähler moduli, each of which is related

to the volume of a four-cycle. For simplicity we will usually consider a single such modulus

ρ, whose real part is associated to the overall volume; in the absence of brane fields we

have

ρ ≡ 1

2
e4u + ib , (2.18)

where b is the integral of the RR potential C4 over the corresponding four-cycle.

We will also be concerned with the dynamics of a mobile D3-brane that fills spacetime

and is pointlike in the compact space. We denote the location of this D3-brane in the

compact space by three complex scalars Y I , I = 1, 2, 3. In the presence of a D3-brane, the

real part of ρ is related to the volume in a more complicated way [13] than in (2.18),

e4u = ρ + ρ̄ − k(Y, Ȳ )/3 , (2.19)
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where k is the geometric Kähler potential for the metric on the Calabi-Yau: g̃IJ̄ = ∂I∂J̄k.

The full Kähler potential for the D3-brane fields and the Kähler modulus ρ is

K = −3 log e4u = −3 log(ρ + ρ̄ − γk(Y, Ȳ )/3) , (2.20)

with γ = TD3κ
2
4. For simplicity we will drop the constant γ, which is a pure number when

α′ = 1, in the remainder of the paper; it may always be restored by inserting it wherever

k(Y, Ȳ ) appears.

This Kähler potential generates kinetic terms matching those derived from the Born-

Infeld action for a D3-brane,

SD3 = −TD3

∫
d4x

√−g4e
−4ugµν∂µY I∂ν Ȳ J̄ g̃IJ̄ . (2.21)

Notice that all powers of the warp factor have cancelled, but a factor of ǫ4/3 is hiding in

g̃IJ̄ .

We will also deal with D3-branes; although these break supersymmetry, their kinetic

terms may still be written in the form (2.21). Both D3-branes and D3-branes feel a potential

from a warped background with a nontrivial F̃5; this is given by

SD3/D3 = −TD3

∫
d4x

√−g4 Φ∓ , (2.22)

where the upper sign is for D3-branes and the lower for the D3-branes. We see that D3-

branes feel no force in our leading-order imaginary self-dual background (2.7). Antibranes,

in contrast, feel a force from Φ+ (2.11) that draws them to the bottom of the throat.

2.3 Nonperturbative effects and Kähler moduli stabilization

Fluxes alone cannot stabilize the Kähler moduli in a type IIB compactification. Stable

vacua will arise only in the presence of some additional ingredient or mechanism. The best-

understood mechanism of this sort is Kähler moduli stabilization due to nonperturbative

effects, as pioneered by Kachru, Kallosh, Linde, and Trivedi (KKLT) [7].

To each Kähler modulus ρi is associated a holomorphic four-cycle Σ
(i)
4 . The KKLT

scenario requires that for each Kähler modulus that is to be stabilized, a brane or branes

must be wrapped over the corresponding four-cycle. These wrapped branes can be either

a stack of n > 1 D7-branes that also fill four-dimensional spacetime, and on which strong

gauge dynamics can occur, or else a Euclidean D3-brane (D3-brane instanton). Either

mechanism produces a ρi-dependent contribution to the superpotential, generically leading

to stabilization of the modulus ρi.

For concreteness of presentation we refer to the case with a single Kähler modulus ρ,

and in which n D7-branes wrap Σ4. Our results extend trivially to the case of a superpo-

tential generated by Euclidean D3-branes, for which one may put n = 1.

The nonperturbative superpotential takes the form

Wnp = Ae−aρ , (2.23)
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where a is a constant and the prefactor A, which depends on the complex structure moduli,

comes from threshold corrections to the gauge coupling of the D7-brane. Ganor [14] has

given a topological argument that implies that in fact A also depends on the positions of

any D3-branes in the compactification. This has been confirmed by explicit calculation in

toroidal orientifolds [15] and in warped throat backgrounds [9]; see also [16].

Specifically, suppose that y1, y2, y3 are three complex coordinates in a region of the

Calabi-Yau, and that Σ4 is defined by a single algebraic equation involving the yI , which

we may write as f(y) = 0. Recall that the Y I are also three complex coordinates on the

D3-brane configuration space, which is precisely the Calabi-Yau manifold. The result of [9]

is that the prefactor A is

A(Y ) = A0 f(Y )1/n , (2.24)

where A0 depends on the complex structure moduli but not on Y or on ρ. It follows that

the nonperturbative superpotential vanishes whenever the D3-brane sits on the four-cycle

Σ4 wrapped by the D7-branes.

We will find it convenient to define

ζ(Y ) ≡ − 1

n
log f(Y ) , (2.25)

so that the total superpotential is

W = W0 + A0 e−aρ−ζ(Y ) , (2.26)

where the constant A0 captures the effects of the integrated-out complex structure mod-

uli. In the remainder of the paper we will study the consequences of the superpotential

corrections ζ(Y ).

3. Supersymmetric vacua for D3-branes

In this section, we present in full generality the conditions for supersymmetric vacua of D3-

branes in the presence of nonperturbative moduli stabilization. We reduce the equations

for the locations of the D3-branes to those for the stationary points of a potential-type

function involving k(Y, Ȳ ) and ζ(Y ) only. We also give the equation for the stabilization

of the Kähler modulus in terms of the D3-brane location.

We turn first to the case of a compactification without D3-branes as a review, before

confronting the case of interest.

3.1 Kähler modulus alone

Consider the nonperturbative superpotential for the single modulus ρ,

W = W0 + A0 e−aρ , (3.1)

with W0, A0 complex constants and a real. The F-term DW ≡ ∂W + W∂K is

DρW = − e−aρ

ρ + ρ̄
[3W0e

aρ + A0(3 + aρ + aρ̄)] . (3.2)

– 7 –
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Supersymmetric solutions are found when this vanishes, leading to

e−aρ(3 + aρ + aρ̄) = −3W0

A0
. (3.3)

The overall volume e4u then solves the transcendental equation

e−ae4u

(3 + ae4u)2 = 9

∣∣∣∣
W0

A0

∣∣∣∣
2

, (3.4)

while the axion b is fixed as

b = −1

a
arg

(
−W0

A0

)
. (3.5)

3.2 Kähler modulus and D3-brane

Now add a D3-brane, which feels no potential in the absence of Kähler moduli stabilization.

Its location is parameterized by three complex coordinates Y I . The superpotential is

now (2.26), while the Kähler potential is as in (2.20). Recall first that the functional form

of a Kähler potential is always ambiguous up to the addition of a holomorphic function ξ

and its conjugate ξ̄. This is reflected here by a corresponding ambiguity in ζ(Y ) and ρ,

and an overall invariance of K and W under the “little Kähler transformations”,

k → k + 3 ξ(Y ) + 3 ξ̄(Ȳ ) ,

ρ → ρ + ξ(Y ) , (3.6)

ζ → ζ − a ξ(Y ) ,

where it is clear that both e4u (2.19) and aρ + ζ(Y ) are invariants.

We now search for supersymmetric vacua. The F-terms that must vanish are

DρW = −aA0e
−aρ−ζ(Y ) − 3W

ρ + ρ̄ − k(Y, Ȳ )/3
, (3.7)

DIW = −A0 ∂Iζ(Y )e−aρ−ζ(Y ) + ∂Ik
W

ρ + ρ̄ − k(Y, Ȳ )/3
, (3.8)

where we write ∂I ≡ ∂Y I . Eliminating W/(ρ + ρ̄ − k/3) using the vanishing of DρW , the

vanishing of DIW implies

∂Iζ(Y ) +
a

3
∂Ik(Y, Ȳ ) = 0 . (3.9)

This is the sought-after equation for vacua for the Y I . The vanishing of (3.7) then becomes

−3W0

A0
= e−aρ−ζ(Y )(3 + aρ + aρ̄ − ak(Y, Ȳ )/3) ,

= e−aρ−ζ(Y )(3 + ae4u) , (3.10)

where we have used (2.19). Multiplying (3.10) by its complex conjugate, we arrive at an

expression fixing e4u in terms of the already-determined Y I :

e−ae4u

(3 + ae4u)2 = 9

∣∣∣∣
W0

A0

∣∣∣∣
2

eζ(Y )+ζ̄(Ȳ )+ak(Y,Ȳ )/3 . (3.11)

– 8 –



J
H
E
P
0
9
(
2
0
0
7
)
1
2
1

This is manifestly little-Kähler-invariant, as the potential function

V(Y, Ȳ ) ≡ ζ(Y ) + ζ̄(Ȳ ) + ak(Y, Ȳ )/3 , (3.12)

is invariant as well; this is closely analogous to the standard N = 1 supersymmetry invariant

G ≡ K + log W + log W . Note that we can combine the ζ, ζ̄ with A0 to obtain

e−ae4u

(3 + ae4u)2 = 9

∣∣∣∣
W0

A(Y )

∣∣∣∣
2

eak(Y,Ȳ )/3 . (3.13)

This equation is the exact analogue of (3.4), the equation for e4u in the case with no D3-

brane, with the addition of the factor involving k(Y, Ȳ ) to ensure little Kähler invariance.

Similarly, the axion b = Im ρ is fixed as

b = −1

a
arg

(
−W0e

ζ(Y )

A0

)
= −1

a
arg

(
− W0

A(Y )

)
, (3.14)

in precise analogy to (3.5). Note also that we can write the desired equations for the

D3-brane vacua (3.9) in a little-Kähler-invariant way:

dV(Y, Ȳ ) ≡ d
[
ζ(Y ) + ζ̄(Ȳ ) + ak(Y, Ȳ )/3

]
= 0 , (3.15)

where d stands for either ∂Y I or ∂Ȳ Ī ; hence the D3-brane seeks to extremize the potential

function V(Y, Ȳ ) that is the little-Kähler-invariant generalization of the Kähler potential

k(Y, Ȳ ).

Equation (3.15) is the general expression for the D3-brane location in the presence of

nonperturbative moduli stabilization with a single Kähler modulus. It constitutes six real

equations in six real unknowns; consequently one would expect on general grounds that

generic solutions will entirely fix the D3-brane moduli and localize the branes to points.

In the next section, we will consider a set of concrete examples of vacua in the warped

deformed conifold throat. We shall find that although some vacua are indeed points, it

is also common for examples that preserve some symmetry to leave one- or even two-

dimensional moduli spaces for the D3-branes.

4. D3-brane potential at the tip of the deformed conifold

We will now study the D3-brane vacuum equation (3.15) in the warped deformed conifold,

for various embeddings of the wrapped D7-branes. We will focus on the tip of the throat,

although we briefly describe off-tip results in appendix C.

Several families of supersymmetric D7-brane embeddings are known in the (deformed)

conifold throat. In any given compact model, however, most of these embeddings are not

realized: the global topology will select the possible compact four-cycles, and then moduli

stabilization will select fixed values for the location of the D7-brane on those cycles. Here

we will study two broad classes of embeddings, but we should bear in mind that any given

compact model will strongly constrain the possibilities.
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4.1 Wrapped brane embeddings in homogeneous coordinates

Each supersymmetric D7-brane embedding f(Y ) is defined in terms of one of the two

natural sets of homogeneous variables zA, wi, A, i = 1 . . . 4 that define the deformed

conifold:

4∑

A=1

(zA)2 = −2(w1w2 − w3w4) = ǫ2 , (4.1)

either as f(zA) or f(wi). It will be convenient for us to evaluate the D3-brane vacuum

equation (3.15) in terms of whichever variables appear in f . Later in the section we shall

pass to angular coordinates on the S3 at the tip, which are more intuitive for describing

that locus.

These homogeneous variables transform under the SO(4) ∼ SU(2)L ×SU(2)R isometry

that acts on the conifold: the zA are a 4 of SO(4) and the wi are a (2,2) of SU(2)L×SU(2)R.

Many D7-brane embeddings preserve a subgroup of SO(4), requiring the D3-brane moduli

space to fill out an orbit of this preserved symmetry. Thus in cases with symmetry-

preserving D7-branes, D3-brane vacua will either sit at a fixed point of the preserved

isometries or else occupy a continuous moduli space; we will find that both cases are

indeed realized.

In making use of the homogeneous variables, we must take into account that they are

an overcomplete set satisfying the constraint (4.1). A straightforward way to do this is to

eliminate one variable in terms of the others, which is akin to choosing a gauge. Doing

this for any given variable is in general not valid for the entire coordinate range, so we will

need to consider different gauge choices to see all vacua. For example, we may eliminate

the first variable in each case:

z1 =
√

ǫ2 − (z2)2 − (z3)2 − (z4)2 , w1 =
w3w4 − ǫ2/2

w2
. (4.2)

The derivatives in terms of the independent variables z2, z3, z4 and w2, w3, w4 are then

∂z1

∂za
= −za(ǫ2 − (z2)2 − (z3)2 − (z4)2)−1/2 = −za

z1
, (4.3)

where a = 2, 3, 4, and

∂w1

∂w2
= −(w3w4 − ǫ2/2)

w2
2

= −w1

w2
,

∂w1

∂w3
=

w4

w2
,

∂w1

∂w4
=

w3

w2
. (4.4)

We note that eliminating the z1 variable forces us to use a patch where z1 6= 0, while

eliminating w1 forces us to a patch with w2 6= 0.

4.2 Vacua at the tip

We shall concern ourselves primarily with D3-brane vacua at the tip of the conifold. At

this locus the homogeneous variables are further constrained by

r3 ≡
4∑

A=1

|zA|2 ≡
4∑

i=1

|wi|2 = ǫ2 , (4.5)
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which combined with (4.1) implies the relations

w1 = −w2 , w3 = w4 , zA = z̄A , at the tip , (4.6)

as is detailed in appendix A. Note that since |w1| = |w2| on the tip, our patch with w2 6= 0

also has w1 6= 0 there.

In principle, solutions to (3.15) may involve non-constant ζ(Y ) playing off against

non-constant k(Y, Ȳ ). However, the geometric Kähler potential depends only on the radial

variable τ and has the form near the bottom of the throat [17],

∂τk = 2−1/2ǫ4/3(sinh 2τ − 2τ)1/3 ∼ 21/6

31/3
ǫ4/3 τ + O(τ3) , (4.7)

which vanishes at the tip; hence the Kähler potential k is stationary in all directions there.

Equivalently, we may show that ∂zAk = ∂wi
k = 0 at the tip. Using (2.14) and (4.5), we

get from (4.7),

k = k0 +
21/6

31/3
ǫ−2/3

(
4∑

A=1

|zA|2 − ǫ2

)
, (4.8)

with k0 a constant. The derivative with respect to za, a = 2, 3, 4 is then

∂zak ∝
(

∂z1

∂za
z̄1 + z̄a

)
=

(
−zaz̄1

z1
+ z̄a

)
, (4.9)

which vanishes at the tip due to the zA being real there, (4.6). An analogous computation

(or the chain rule) shows ∂wi
k = 0 at the tip as well.

Thus we see that the term involving the Kähler potential drops out of (3.15) at the

tip of the throat. Consequently, finding D3-brane vacua at that locus then reduces simply

to solving

∂Y Iζ = 0 , (4.10)

or, using (2.25),

∂Y I log f(Y ) =
∂Y If(Y )

f(Y )
= 0 . (4.11)

In the remainder of the section we will focus on solutions to (4.11).

We notice immediately that when the D3-brane sits on the D7-brane, the denominator

in (4.11) vanishes, preventing (4.11) from being satisfied unless the numerator were to

vanish even more rapidly. In the examples to follow the numerator will not vanish quickly

enough, and we will conclude that in general, the D3-branes will be confined to a locus

away from the moduli-stabilizing wrapped D7-branes. Additionally, we see that the D3-

brane vacua must be ‘symmetrically oriented’ with respect to the wrapped branes, in the

sense that the D3-branes sit at an extremum of f .
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4.3 D3-brane potential of ACR embeddings

General solutions for ACR embeddings. An infinite class of holomorphic four-cycles

that admit supersymmetric wrapped D7-branes was found by Areán, Crooks, and Ramallo

(ACR) [18],

f(wi) =
4∏

i=1

wpi

i − µP , (4.12)

where pi are four integers and P ≡ ∑4
i=1 pi. The D3-brane vacua (4.11) will occur where

the derivatives,

∂f

∂w2
= = (p2 − p1)w

p1

1 wp2−1
2 wp3

3 wp4

4 , (4.13)

∂f

∂w3
= = (p1w3w4 + p3w1w2)w

p1−1
1 wp2−1

2 wp3−1
3 wp4

4 , (4.14)

∂f

∂w4
= = (p1w3w4 + p4w1w2)w

p1−1
1 wp2−1

2 wp3

3 wp4−1
4 , (4.15)

are set to zero, and also f(wi) 6= 0.

We now find the general solution for D3-brane vacua at the bottom of the throat in

this class of D7-brane embeddings. Recall that in our coordinate choice, we must have

|w1| = |w2| 6= 0 at the tip. Setting the derivative (4.13) to vanish thus requires either:

p1 = p2 , or w3 = w4 = 0 , p3 + p4 ≥ 1 . (4.16)

Meanwhile the second two derivatives (4.14), (4.15) can be set to zero either by

w3 = w4 = 0 , p3 + p4 ≥ 2 , (4.17)

or

p3 = p4 , p1w3w4 + p3w1w2 ≡ p1|w3|2 − p3|w1|2 = 0 . (4.18)

The possible solutions are as follows. First, clearly w3 = w4 = 0 is a solution of all

equations for p3 + p4 ≥ 2. If p3 + p4 = 1 we may set (4.13) to zero with w3 = w4 = 0, but

then the other equations have no solution, so this must be discarded. All other solutions

thus have p1 = p2 to set (4.13) to zero, and p3 = p4 and p1|w3|2 = p3|w1|2 so that (4.14)

and (4.15) vanish.

This is the complete set of ACR vacua in the gauge where w1 and w2 must not vanish.

However, there are also vacua with w1 = w2 = 0 that may be found by repeating the same

analysis in the gauge where w3 is eliminated as an independent variable, and 1 ↔ 3, 2 ↔ 4

in the equations above.

We may thus summarize the three classes of D3-brane vacua in ACR embeddings as,

A. w1 = w2 = 0 if p1 + p2 ≥ 2 , (4.19)

B. w3 = w4 = 0 if p3 + p4 ≥ 2 , (4.20)

C. p|w3|2 = q|w1|2 if p1 = p2 ≡ p , p3 = p4 ≡ q .
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To understand the dimensionality of these loci, it is convenient to translate them into

coordinates ψ, θ, φ on the S3 (2.13). As derived in appendix A, w1 = w2 = 0 corresponds

to θ = 0, while w3 = w4 = 0 is θ = π. It is useful to define angles α ≡ ψ + φ, β ≡ ψ − φ,

in terms of which the metric on the three-sphere (2.13) becomes

ds2 = dθ2 + cos2

(
θ

2

)
dα2 + sin2

(
θ

2

)
dβ2 . (4.21)

Thus, at each of θ = 0 and θ = π, one of the angles α, β becomes degenerate and the other

parameterizes an S1. Hence solutions of classes A and B are both S1’s.

Meanwhile, class C vacua occur for p1 = p2 ≡ p and p3 = p4 ≡ q. Obviously solutions

to p|w3|2 = q|w1|2 only exist when p and q do not have opposite signs; in terms of the S3,

this is solved by θ = 2 tan−1
√

p/q. If either p = 0 or q = 0, this solution reduces to θ = 0

or θ = π and is an S1, just like solutions A or B. For both p and q nonvanishing and of

the same sign, neither α nor β is degenerate, and the locus of vacua is two-dimensional,

with (4.21) indicating the space is a T 2.

The vacua of the ACR embeddings are thus all in one- or two-dimensional, continuous

moduli spaces:

A. S1 : θ = 0 if p1 + p2 ≥ 2 , (4.22)

B. S1 : θ = π if p3 + p4 ≥ 2 , (4.23)

C1. T 2 : θ = 2 tan−1
√

p/q if p1 = p2 ≡ p 6= 0 , p3 = p4 ≡ q 6= 0 , (4.24)

C2. S1 : θ = 0 if p1 = p2 = 0 , p3 = p4 6= 0 , (4.25)

C3. S1 : θ = π if p1 = p2 6= 0 , p3 = p4 = 0 . (4.26)

These solutions may fail to exist if f(za) = 0 happens to coincide with the putative vacuum

locus. This in general depends on the value of µ in the embedding (4.12). For solutions of

type A or B, this occurs for µ = 0. For type C solutions, it occurs when

(√
2µ

ǫ

)P

=

( −p

p + q

)p (
q

p + q

)q

, (4.27)

where we used that in this case P = 2p + 2q. In particular, µP must be real for this to

hold. For generic values of µ, the D7-brane will not intersect the moduli spaces and the

solutions will exist.

The Karch-Katz embedding. As our first example, consider the Karch-Katz embed-

ding [19]. It has the form

fKK = w1w2 − µ2 . (4.28)

Hence p1 = p2 = 1 and p3 = p4 = 0. We readily see that it has two types of solutions: one

of type A (4.22), an S1 at θ = 0, and one of type C3 (4.26), also an S1, this one at θ = π.

This solution preserves an SO(2) × SO(2) subgroup of SO(4). These SO(2)’s may be

thought of as the phases in w1/w2 and w3/w4. At the tip, they are realized precisely as
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shifts of the angles α ≡ ψ + φ and β ≡ ψ − φ, respectively. At each locus, θ = 0 or θ = π,

one of the two angles is degenerate while the other parameterizes the S1; hence one of

the SO(2)’s is faithfully represented, while the other is trivial, on each component of the

moduli space.

It is interesting to note that the Karch-Katz embedding may also be written as

fKK = −(z1)2 + (z2)2

2
− µ2 . (4.29)

The SO(2)’s are then rotations of z1 into z2, and of z3 into z4.

Generalized Karch-Katz embeddings. It is natural to categorize D7-brane embed-

dings by their preserved symmetry. The ones that preserve SO(2) × SO(2), as the Karch-

Katz embedding does, are precisely those that are functions of w1w2 = −
(
(z1)2 + (z2)2

)
/2

and w3w4 =
(
(z3)2 + (z4)2

)
/2; this is the condition p1 = p2 ≡ p, p3 = p4 ≡ q, or precisely

the circumstances where solution C may appear (solution C also requires sgn(p) = sgn(q)).

This is thus the class of ACR embeddings that may have two-dimensional moduli spaces.

As an example, consider

f = w1w2w3w4 − µ4 , (4.30)

with p1 = p2 = p3 = p4 = 1. This embedding has an S1 moduli space of type A, an S1

moduli space of type B, and a T 2 moduli space of type C1 at θ = π/2. This last space is

a square torus with SO(2) × SO(2) acting naturally on the two directions.

The Ouyang embedding. As a final example, let us consider the Ouyang embed-

ding [20], which has the form p1 = 1 with the other pi vanishing; that is, the embedding

function f has the form

fO = w1 − µ . (4.31)

This embedding breaks SO(4) → SO(2), the preserved symmetry being the relative phase

of w3 and w4, which is α = ψ + φ on the S3 at the tip.

One can quickly see that none of the conditions enumerated in (4.22)–(4.26) hold in

this case. Consequently, the Ouyang embedding has no supersymmetric D3-brane vacua

on the tip of the throat. We see that it is not the case that all ACR embeddings have

supersymmetric vacua there.

One naturally wonders whether there are supersymmetric vacua elsewhere in the

throat, found by canceling the non-vanishing of the derivative of the embedding function

against the non-vanishing of the Kähler potential. In appendix C we show that generically

there will indeed be such vacua; although we do not examine the issue, one may surmise

that other embeddings will also have off-tip vacua.

Another natural question is whether there are non-supersymmetric vacua at the tip.

In fact this question is a valid one for all embeddings, regardless of whether there are

supersymmetric vacua present or not, but is particularly interesting for the Ouyang case

where no supersymmetric vacua are known explicitly. We leave this important question for

future work.
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Thus far we have found embeddings with moduli spaces of D3-brane vacua at the tip,

as well as embeddings with no D3-brane vacua there. However, so far we have not found

an example of what we might think would be the most generic case – a vacuum in which

the D3-brane is stabilized at a point. We now turn to a class that does possess such vacua,

where the D3-brane position is completely stabilzed.

4.4 D3-brane potential of Kuperstein embeddings

General solutions for Kuperstein embeddings. Not all supersymmetric embeddings

of D7-branes fall into the class analyzed in the previous subsection. Another set was

described by Kuperstein [21], having the form (up to SO(4) permutations of the zA),

f = z1 − g
(
(z3)2 + (z4)2

)
, (4.32)

where g(x) is a holomorphic function of x ≡ (z3)2 + (z4)2. This class generally breaks

SO(4) → SO(2), where the remaining symmetry is rotations preserving x.

We may classify general solutions of this class. The derivatives of f that must vanish

are

∂f

∂z2
= −z2

z1
, (4.33)

∂f

∂z3
= −z3

z1

(
1 + 2z1g′(x)

)
, (4.34)

∂f

∂z4
= −z4

z1

(
1 + 2z1g′(x)

)
. (4.35)

One solution is obviously z2 = z3 = z4 = 0; this holds so long as g′(x = 0) does not diverge.

The other is z2 = 0, (1 + 2z1g
′(x)) = 0. At z2 = 0 we have z1 =

√
ǫ2 − x, so the solutions

are

D. z2 = z3 = z4 = 0 if g′(x) finite , (4.36)

E. z2 = 0 , 1 + 2
√

ǫ2 − x g′(x) = 0 . (4.37)

In principle, one should also analyze (4.32) in gauges where z2 or one of z3, z4 is eliminated.

However, the former yields no solutions, while the latter again produces solution E.

Again, to discuss the solutions in more detail, we translate them into angular coor-

dinates on the S3 at the tip. Solution D is a single point with z1 = ǫ; it translates into

θ = β = π. (Note that z1 = −ǫ is not independent since the defining relation of the conifold

identifies the two points related by a flip in the sign of all four zA.)

Meanwhile, for solution E a constraint is placed on x = ǫ2 cos2(θ/2), while z2 = 0

implies β = π. The resulting space is an S1 parameterized by α; the SO(2) symmetry

of the embeddings corresponds to α-rotations. If x = 0, we have θ = π and the solution

degenerates to the point solution D.

Thus we summarize,

D. Point : β = θ = π if g′(x = 0) finite , (4.38)

E. S1 : β = π , θ = 2cos−1(x/ǫ2) if x 6= 0 solves 1 + 2
√

ǫ2 − x g′(x) = 0 . (4.39)
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As with the ACR cases, vacua may fail to exist when f = 0 happens to coincide with

the candidate vacuum locus; this always depends on the constant term in the embedding

function. Solution D does not hold if g(0) = ǫ, while solution E fails if 2g(x)g′(x) = −1 for

the stabilized value of x.

We see that completely stabilized D3-brane moduli are possible in this embedding,

along with continuous moduli spaces. We now turn to examples.

Simplest Kuperstein embedding. The simplest case, which was focused on in [21]

and could be called simply the Kuperstein embedding, is defined by g = const, or in other

words

fK = z1 − µ , (4.40)

for some complex µ. This embedding has a larger preserved symmetry than the general

class, breaking SO(4) → SO(3), where SO(3) acts naturally on the other three za.

Examining the possible vacua, we find that there is indeed a solution of type D (4.36),

but since g′(x) = 0, no solution of type E. Thus the only supersymmetric vacuum on the

tip for this embedding is a single point with all moduli stabilized.

Notice that while this embedding is superficially similar to the Ouyang embed-

ding (4.31), they are nonetheless quite different since the variables zA and wi have distinct

symmetry properties; the Kuperstein preserves an SO(3) while the Ouyang only preserves

SO(2), since the zA transform as a 4 of SO(4) while the wi are best thought of as a (2,2).

Consequently the vacuum structure in the two cases differs.

Kuperstein embedding with moduli space. An elementary example in the Kuper-

stein class (4.32) that has an S1 moduli space is given by the linear function g(x) =

−x/(2sǫ) + µ where s > 0 is a constant; we have inserted the 2ǫ for convenience. Then

f = z1 +
(z3)2 + (z4)2

2sǫ
− µ . (4.41)

Since g′(x = 0) = −1/(2sǫ) does not diverge, the pointlike solution of type D exists at

z2 = z3 = z4 = 0. There is also a solution of type E, having β = π and satisfying

1 + 2
√

ǫ2 − xg′(x) = 1 −
√

ǫ2 − x/(sǫ) = 0, solved by x = ǫ2(1 − s2), or sin(θ/2) = s. The

solution of type E only exists for 0 < s ≤ 1; it is generically an S1 but coincides with the

pointlike type D solution for s = 1.

To summarize, we have found that the ACR and Kuperstein classes of embeddings have

a variety of possible D3-brane vacua, encompassing two- and one-dimensional moduli spaces

such as T 2 and S1, as well as discrete points. There is no guarantee that a fixed compact

model will realize any particular embedding; additionally, as we discuss in section 6, the

bulk of a compact geometry will generally break the preserved isometries and lift the moduli

spaces, though if the throat is strongly warped this breaking will be suppressed. It is also

possible that other supersymmetric embeddings may exist; however, in studying these cases

we have uncovered a broad spectrum of possible vacua, and it is plausible that any other

embeddings will possess similar characteristics to the ones studied here.
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5. Vacua for D3-branes

The D3-brane feels a force from the flux background even in the absence of the Kähler

modulus stabilization. It couples to Φ+ as given in equation (2.22), and the background

variation (2.11) of Φ+ draws the D3-brane to the bottom of the throat. Because the

warp factor is independent of the coordinates on the S3 at the bottom of the throat, the

leading-order background does not prefer one point on the S3 over another.

In addition, however, a D3-brane feels a force from moduli stabilization, as a D3-brane

does. In this section, we will explore the possible vacua for D3-branes at the tip. These

vacua are all non-supersymmetric, of course, and at best metastable [22].

The effect of moduli-stabilization forces on D3-brane motion during slow-roll D-brane

inflation is reasonably well-understood [8]. However, the role of moduli-stabilization forces

in the final brane-antibrane annihilation stage has received relatively little attention. Since

annihilation of a brane-antibrane pair is the typical exit from inflation in this class of

models, it is important to ascertain whether the moduli stabilization forces even permit

branes and antibranes to reach the same loci, or whether they create an additional potential

barrier to annihilation. We will find that at the tip of the throat, the two kinds of branes

do indeed have vacua at the same locations, so there is no problematic barrier that could

forestall tachyon condensation.

In the D3-brane case, the moduli stabilization force was derived [9] by considering the

backreaction of the brane on the warp factor and on C4; these determined the real and

imaginary parts of ζ(X), respectively. The D3-brane has by definition the same source for

gravity but the opposite C4 charge; therefore going from brane to antibrane is realized by

flipping the sign of the imaginary part of ζ, or in other words, exchanging ζ(Y ) ↔ ζ̄(Ȳ ) in

the potential:

VD3(ρ, ρ̄;Y, Ȳ ) = VD3|ζ(Y )↔ζ̄(Ȳ ) . (5.1)

The D3-brane potential, being supersymmetric, possesses minima whose locations are de-

termined by the first-order equations DW = 0. A nonsupersymmetric potential like VD3,

on the other hand, in general has minima determined simply by dV = 0, which in terms of

quantities like ζ and k will generally be second-order equations. We may nonetheless ask:

is it possible that the D3-brane vacua solve first-order equations analogous to those of the

D3-brane case?

Because of its relationship (5.1) to the D3-brane potential, we may write VD3 as

VD3 = eK
(
(K−1)αβ̄F̂αF̂ β̄ − 3Ŵ Ŵ

)
, (5.2)

with

F̂α ≡ DαW |ζ(Y )↔ζ̄(Ȳ ) , Ŵ ≡ W |ζ(Y )↔ζ̄(Ȳ ) , (5.3)

and the indices α, β running over ρ as well as I = 1, 2, 3 for the D3-brane. This form

obviously resembles a supersymmetric potential. The vanishing of the F̂α, however, in

general does not produce an extremum of the potential. In calculating dαV , derivatives
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acting on eK and Ŵ together lead to terms in DαŴ ≡ ∂αŴ +W∂αK; while this coincides

with F̂α for α = ρ, it does not in general for α = I:

F̂ρ = ∂ρŴ + Ŵ∂ρK = DρŴ , F̂I = ∂Ȳ Ī Ŵ + Ŵ∂Y I K 6= DIŴ , (5.4)

because of the exchange of ζ(Y ) and ζ̄(Ȳ ). This is not surprising, as a non-supersymmetric

potential has in principle no reason to satisfy equations of the sort DW = 0.

However, there is a special case where F̂I and DIŴ will vanish simultaneously: when

∂Y I K = 0. In that case, DIŴ = F̂Ī and the vanishing of the F̂α also implies the vanishing

of the DαŴ . In this case, first-order equations do lead to a minimum of VD3.

While this additional condition is not universal, as shown in section 4.2 on the tip of

the S3 we do indeed have

∂Y IK ∝ ∂Y Ik = 0 . (5.5)

Consequently, at the tip of the throat (or in any locus in a more complicated geometry

where (5.5) holds), the D3-brane potential has a minimum for

F̂α ≡ DαW |ζ(Y )↔ζ̄(Ȳ ) = 0 . (5.6)

Hence we may take the first-order equations for the D3-brane minima from the previous

sections, and simply switch ζ(Y ) with its conjugate to find the equations for minima for

the D3-branes. Most important for us is that the equation (3.15), which becomes

d
[
ζ(Y ) + ζ̄(Ȳ )

]
= 0 , (5.7)

is invariant under this conjugation. Consequently, the D3-branes are localized to the same

subspace on the S3 as the D3-branes.

We see additionally that the equation (3.13) for the volume is unchanged. The axion

stabilization equation (3.14) is modified in a straightforward way, fixing the axion at a

different value; because of the axion shift symmetry that was present before the moduli

stabilization potential appeared, however, all frozen values of the axion are physically

equivalent.

Another way to see the same result is to consider the explicit form of the D3-brane

potential and examine the transformation of each term under ζ(Y ) ↔ ζ̄(Ȳ ). The scalar

potential for a brane can be written,

VD3 = eK
(
(K−1)αβ̄FαF β̄ − 3|W |2

)
, (5.8)

= eK
(
(K−1)ρρ̄FρF ρ̄ + (K−1)ρJ̄FρF J̄ + (K−1)Iρ̄FIF ρ̄ + (K−1)IJ̄FIF J̄ − 3|W |2

)
.

We recall that the no-scale structure of the background implies

(K−1)αβ̄∂αK∂β̄K − 3 = 0 , (5.9)

for α = ρ, I, causing all |W |2 terms to vanish. In addition, explicit calculation reveals that

(K−1)ρJ̄ and (K−1)Iρ̄ are proportional to ∂Y I K or ∂Ȳ J̄ K. Hence the potential becomes

VD3 = eK
(
(K−1)ρρ̄(∂ρW∂ρ̄W + 2Re(W∂ρ̄K∂ρW ))

+(K−1)IJ̄∂IW∂J̄W̄ + ∂Y I K(. . .) + ∂Ȳ J̄ K(. . .)
)

(5.10)
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The only one of the first three terms not invariant under the conjugation of ζ(Y ) is the

second. The non-invariant term also happens to be the only one containing the axion Im ρ:

2 eK(K−1)ρρ̄ Re(W∂ρ̄K∂ρW ) = −2a eK (K−1)ρρ̄ Re(W 0A∂ρ̄Ke−aρ−ζ(Y )) + . . . . (5.11)

We find that in transforming to VD3 from VD3, provided ∂Y IK = 0 as is the case at the

throat’s tip, the only change in the potential to consider is from the term (5.11). However,

we observe that this change — the flip in the sign of Im ζ(Y ) — can be compensated for

simply by changing the value of the axion Im ρ, as the axion appears nowhere else in the

potential.

Given this change in the axion minimum, the potential for all the other fields on the

tip of the throat will look the same for the D3-brane as it did for the D3-brane, and the

volume and brane locations will have the same solutions as they did for the D3-brane case,

equivalent to our previous analysis.

In summary, the change from a D3-brane at the bottom of the throat to a D3-brane

modifies only the stabilized value of the axion, while preserving the overall volume and

brane vacua. Moduli stabilization forces restrict D3-branes and D3-branes to the same

subloci of the three-sphere.

6. Enumerating brane forces and angular inflation

In the preceding sections we have seen that D3-branes and D3-branes are driven to the

same loci by moduli stabilization forces. Moreover, these loci often include flat directions

protected by isometries. A natural question is whether inflation could occur as a D3-brane

moves along such a trough in the angular directions (cf. [23]).

To examine this question, we need to consider all the possible forces acting on the

branes, and to estimate their relative strengths and effects. Hence, we will now compute

the primary contributions to the potential for the scalar degrees of freedom of a brane and

an antibrane in a KS throat. The enumeration and comparison of all forces on the branes

is also interesting in its own right. These contributions are: the brane-antibrane tachyon

potential, the brane-antibrane Coulomb potential, the potential from bulk breaking of

isometries, and the potential from moduli stabilization.

Equipped with this information, we will then consider, in section 6.2, a possible infla-

tionary scenario involving brane-antibrane attraction along the angular directions of the

S3 at the tip. We find that this scenario does not produce a sufficient number of e-folds.

Our results apply directly only to a KS throat, and the difficulties may be more or less

severe in other throat constructions.

6.1 The brane/antibrane potential

Brane-antibrane interactions. A brane and an antibrane interact at long distances

by their mutual Coulomb interaction and at short distances by the appearance of an open

string tachyon. The Coulomb interaction in a warped throat can found by computing the

perturbation of the warp factor/five-form field Φ+ by a D3-brane in the warped space,

which is then used to compute the energy of a D3-brane as a function of the D3-brane
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position. The details of the calculation are given in appendix B; for small angular and

radial separations, the potential takes the form,

VDD = 2TD3 a4
0

(
1 − 4πgsα

′2

R4
S3

1

(ρ2 + (∆Ω)2)2
+ . . .

)
, (6.1)

where ρ ≡ |~τ − ~τ1| and ∆Ω are the dimensionless coordinate radial separation and S3

angular separation between the brane and antibrane on the approximate R× S3 geometry

near the tip, respectively. (In this section we will keep explicit factors of α′ for clarity,

though we have set α′ → 1 elsewhere in the paper.)

The brane-antibrane tachyon can begin to condense when the proper (warped) trans-

verse distance between a D3-brane and D3-brane is of order a string length. Near the

tip we see from the metric (2.16) that proper warped separations of order a string length

correspond to dimensionless coordinate distances

ρ,∆Ω ∼ (gsM)−1/2 . (6.2)

However, we require gsM ≫ 1 to be in the supergravity limit, so order-one coordinate

distances are far outside the range of the tachyon; only at the parametrically smaller

separation (6.2) does the tachyon set in. This justifies focusing on the Coulomb potential

for most of the evolution of a brane-antibrane pair at the tip.

Approximate isometries and bulk effects. The KS throat has the exact isometry

SO(4) ≃ SU(2) × SU(2) which is enlarged to SU(2) × SU(2) × U(1) (the symmetry group

of T 1,1, the base of the cone) away from the tip of the throat. These geometric isometries

are reflected in the form of the Kähler potential (4.7), which depends only on the radial

coordinate [17]:

k(zi, z̄i) = 2−1/2ǫ4/3

∫
(sinh 2τ − 2τ)1/3 ∼

{
3
2

(∑
i |zi|2

)2/3
= r2 r ≫ ǫ

k0 + 18−1/6ǫ−2/3
(
r3 − ǫ2

)
r → ǫ.

(6.3)

Away from the tip, the Kähler potential does not depend on any of the angular coordinates

of T 1,1, and at the tip it does not depend on the coordinates on the S3.4

Kähler potential isometries of this sort are important because they strongly restrict

the form of the potential felt by a probe brane. In particular, if a particular isometry

of the Kähler potential is also respected by the superpotential – determined for us by

the embedding of the wrapped D7-branes – then the total potential will be flat along the

associated direction, as we saw repeatedly for the moduli spaces in section 4.

However, the throat is attached to a larger, compact geometry, which in general need

not preserve any of these isometries. In fact, a compact Calabi-Yau cannot have exact

continuous isometries, so when a finite throat is glued into a compact bulk, the throat

isometries must be broken, perhaps weakly, by bulk effects.

4Let us note that the presence of isometries is not generic, and one could expect a ‘typical’ throat to

have no isometries at all.
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This breaking may be described as arising from vevs of certain operators of the dual

gauge theory [12]. An operator of dimension ∆ which breaks the isometry in the UV gives

rise to a mass in the IR,

m2
bulk ∼ (gsMα′)−1a∆−2

0 . (6.4)

Provided the operators in question have sufficiently large dimensions, these symmetry-

breaking effects are suppressed by powers of the warp factor. Perturbations associated to

relevant operators ∆ < 4 would correspond to completely changing the KS throat geometry

and would violate our assumption that the compactification contains a KS throat, while

those associated to marginal operators ∆ = 4 correspond to shifts in moduli that we have

taken to be fixed. Thus, the bulk effects of interest are those associated to irrelevant

operators with ∆ > 4; the corresponding perturbations are suppressed by powers of the

warp factor. In the KS throat, the leading irrelevant operator has ∆ =
√

28 ≈ 5.29 [12],

leading to a suppression m2
bulk ∼ a3.29

0 .

We are assuming that the bulk geometry before moduli stabilization is of the GKP type

even outside the throat, obeying (2.7) as described by [3]. Consequently the perturbations

from bulk effects (6.4) can produce no potential for a D3-brane, which feels a flat potential

in any such background. A D3-brane, on the other hand, will in general be sensitive to

bulk effects. Hence we may think of the warping as protecting the D3-brane potential from

corrections by producing a sequestered region that preserves some approximate isometries.

Mass terms from D7-branes. As we have seen in the preceding sections, the wrapped

branes that generate a nonperturbative superpotential for the Kähler moduli also generate

a potential for D3-brane motion, through the correction computed in [15, 9]. However,

the form of this potential depends on the precise embedding of the wrapped branes, and

there exist simple embeddings that preserve some of the isometries of T 1,1; for example,

the Karch-Katz embedding (4.28) preserves a full SO(2) × SO(2) isometry with possible

S1 moduli spaces. If we consider such an embedding, a D3-brane and a D3-brane will

be restricted to the same locus on the tip by the nonperturbative forces; however, the

mutual Coulomb attraction will be present, and in general the D3-brane will also feel the

bulk effects forces we have discussed. We note that for embeddings which do not admit

supersymmetric vacua on the tip (e.g., the Ouyang embedding), the potential separating

the D3 from the D3 which is drawn to the tip by the warped background may also interfere

with inflation.

The simplest brane-antibrane inflation model is one in which the D3-brane and the

D3-brane are separated along a flat direction and feel only the Coulomb attraction. Could

the locus on the tip selected by the moduli-stabilization forces include such a flat direction?

To address this, we first need to know whether the moduli stabilization forces are stronger

than the bulk effects. This is important: if the bulk isometry-breaking effects gave a leading

contribution to the potential, then the D3-brane could be separated from the D3-brane by

a potential barrier that is large compared to the potential from moduli stabilization, and

also large compared to the Coulomb interaction. If instead the moduli stabilization effects

are dominant, they will restrict the D3-brane and D3-brane to a common moduli space.

Then, the weaker bulk effects will draw the D3-brane to some point in this space, but will
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not affect the D3-brane. In the end, the D3-brane is free to move under the influence of

the Coulomb force alone, and brane inflation can proceed. We will now show that the

moduli-stabilizing force is generically the dominant one.

The angular potential induced by the D7-branes is somewhat complicated, but we only

need a parametric estimate that includes powers of the warp factor. For example, there is

a term

V1 =
∣∣∣f̂(Y )

∣∣∣
2
A2

0

a2(ρ + ρ̄)e−(ρ+ρ̄)

3e8u
≡ V0

∣∣∣f̂(Y )
∣∣∣
2

. (6.5)

that only depends on the angles via the factor |f̂(Y )|2 ≡ |µ−1f(Y )|2, as V0 depends only

on the radial coordinate. Here µ is the constant term appearing in f , e.g. in the simple

Kuperstein embedding f = zA − µ or the Ouyang embedding f = wi − µ. The precise

functional form of f is not, however, important at present.

We will consider terms of this form to get an estimate of the relative strengths of moduli

stabilization forces and bulk effects on the S3. Any other terms from moduli stabilization

that are weaker than (6.5) can be neglected in comparison, while if any other terms are

stronger they provide an even stronger potential. Thus, by showing that (6.5) is stronger

than the bulk effects, we can establish our hypothesis.

Before proceeding, we note that requiring that a D3-brane at the tip can lift this

configuration to a metastable de Sitter vacuum implies that V0 ∝ TD3a
4
0 [7]. This is because

the energy of such a D3-brane is proportional to TD3a
4
0, while the negative cosmological

constant associated to moduli stabilization is proportional to −V0. If V0 ≫ TD3a
4
0, the

net cosmological constant is negative. On the other hand, if V0 ≪ TD3a
4
0, the potential is

dominated by the D3-brane, which drives a runaway decompactification. Only when these

two effects are balanced, V0 ∼ TD3a
4
0, does a metastable de Sitter vacuum arise.

For simplicity we focus on a particular direction θ on the S3. The canonically-

normalized field associated to θ is

ϑ ≡ ca0θ (6.6)

where c = (TD3gsMα′)1/2e−2u. (In the remainder of this discussion we will omit the

factor e2u and focus on the more important dimensionful quantities and powers of the

warp factor.) A key consequence is that the curvature of the potential in the canonical ϑ

direction is parametrically greater than the curvature in the θ direction:

∂2V1

∂ϑ2
=

1

c2a2
0

∂2V1

∂θ2
. (6.7)

Combining this result with the condition V0 ∼ TD3a
4
0, we conclude that moduli stabilization

gives rise to a mass-squared in the canonical ϑ direction of order

m2
D7 =

∂2V1

∂ϑ2
∼ a2

0

gsMα′
∂2

∂θ2

∣∣∣f̂(Y )
∣∣∣
2

. (6.8)

On the other hand, the typical mass-squared from bulk effects is m2
bulk ∼ (gsMα′)−1a3.29

0 ,

as we estimated previously in (6.4) using the irrelevant operator with the lowest dimension

in KS, ∆ =
√

28 ∼ 5.29. We conclude that m2
D7 will be much larger than m2

bulk, provided
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that (∂2
∣∣∣f̂(Y )

∣∣∣
2
/∂θ2) ≫ a1.29

0 , i.e. unless the dimensionless curvature in the θ direction is

parametrically small. However, there is no reason to expect this curvature to be very small

unless the parameters characterizing f̂ are tuned to take extreme values; generic ratios like

ǫ/µ of order unity thus lead to the generic case of the moduli stabilization forces being

hierarchically larger than the forces from bulk effects.

We will now illustrate this in a simple example, the Kuperstein embedding with n = 1.

In this case f̂ has the form

f̂ = 1 − z1

µ
. (6.9)

The term (6.5) can then be written

V1 = V0

∣∣∣∣1 − z1

µ

∣∣∣∣
2

, (6.10)

where the constant V0 is independent of the angles. The vacuum is a point, sitting at

z2 = z3 = z4 = 0, z1 = ǫ. Consider the special line ψ = π, φ = 0, with θ allowed to vary

to fill out the line. Along this line,

z1 = ǫ sin
θ

2
, (6.11)

(cf. appendix A) and so z1 ranges between ǫ (the vacuum) and 0.

The curvature of the potential in the ϑ direction, to leading order in ǫ/µ, is

∂2V1

∂ϑ2
∼ a2

0

gsMα′
ǫ

µ
sin

θ

2
. (6.12)

Hence, the mass-squared in the canonical ϑ direction is of order

m2
D7 ∼ a2

0

gsMα′
ǫ

µ
. (6.13)

We conclude that m2
D7 can be much larger than m2

bulk, provided that

ǫ

µ
≫ a1.29

0 . (6.14)

The parameter µ measures the minimal radial location reached by the D7-brane, while

ǫ characterizes the deformation of the conifold. Thus, the condition (6.14) is just the

requirement that the D7-brane reaches sufficiently far into the throat, which is generically

satisfied. In conclusion, it appears that the mass terms from moduli stabilization are

typically large compared to those from bulk effects.

6.2 Angular inflation

Brane-antibrane inflation is attractive as an inflationary scenario because the Coulomb

interaction is weak at long distances, leading to a flat potential [5]. Additional corrections

to the potential coming from the conformal coupling of the inflaton to the background
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and from moduli stabilization ruin the flatness of the potential [8], but in some fine-tuned

setups these contributions might possibly be tuned to cancel each other [24, 10, 25].

In most brane inflation scenarios the angular directions are ignored and inflation pro-

ceeds along the radial coordinate. (For a study of antibrane-only inflation in the angular

directions see [26]. The mirage cosmology arising from angular motion in a warped throat

was considered in [27].) However, because the angular directions are protected by symme-

tries, the potential along these directions could be flat enough for inflation to take place.

Moreover, fluctuations in such flat angular directions could give important corrections to

scenarios based on radial motion.

In light of this, we will consider the possibility of angular inflation — relative angular

motion of a brane/antibrane pair living in a shared flat direction at the bottom of the

throat. The D3-brane may feel forces from isometry-breaking bulk effects, but assuming

these are weaker than the moduli stabilization forces — as we have shown is generically

the case — these will merely pull the D3-brane to a point on the shared flat direction.

The D3-brane then feels nothing but the Coulomb potential, and we now determine

whether this potential is flat enough for inflation. Without loss of generality, we focus

on motion in the θ direction. Rewriting (6.1) in terms of the canonically normalized field

ϑ (6.6), we find

VDD = 2TD3 a4
0

(
1 − TD3 a4

0 e−8u

2π2ϑ4
+ . . .

)
, (6.15)

where we also used (2.15). We now compute the slow-roll parameter η ≡ M2
p V ′′/V , where

the derivatives are with respect to the canonical variable ϑ; we find

η = −M2
p

10

π2

TD3 a4
0 e−8u

ϑ6
. (6.16)

Naively this seems to be enormously suppressed by the exponential warp factor a4
0.

However, the situation is more complicated. The canonically normalized variable ϑ,

as is apparent in its definition (6.6), is compressed by the warping to a field space of

exponentially small size. The maximum value of ϑ is not some order-one quantity like π,

but rather

ϑmax ∼ a0 (TD3gsMα′)1/2 e−2u . (6.17)

The minimum value of |η| over the field space of ϑ occurs at ϑmax; we find

|ηmin| ∼
10M2

p e4u

T 2
D3 a2

0 π2(gsMα′)3
. (6.18)

This is exponentially large; the potential is not suitable for inflation.

What we have learned is that the warp factor tends to flatten out the potential, which

helps inflation; however, it also compresses the field space in the canonical variable, which

hurts. We find that the latter effect wins, and there is too little field space to permit

brane/antibrane inflation in the angular directions. One may also see this with the number

of e-folds:

Ne =
1

M2
p

∫
V

V ′ dϑ =
π2

10

T 2
D3

M2
p

a2
0 (gsMα′)3e−4u =

1

η
. (6.19)
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Hence, over the available field space the number of e-foldings is exponentially small.

We may inquire whether parametric factors in (6.18), other than the warping, may

ameliorate the situation. Recall that M2
p = κ−2

10 V6 where κ2
10 = 1

2(2π)7g2
sα′4, and the

six-dimensional volume is conservatively bounded by V6 ≥ R6
AdS. Using the relations

R4
AdS =

27π

4
gsKMα′2 , a0 ∼ e−2πK/(3gsM) , (6.20)

we indeed find that

Ne ≪ 1 . (6.21)

We conclude that motion along the angular directions gives rise to a negligible amount

of inflation. In particular, this implies that for scenarios involving radial motion of a D3-

brane, it is not necessary to worry about contributions from angular motion: the angular

directions are not flat enough to have an important effect.

7. Conclusions

Although D3-branes enjoy a no-force condition in no-scale flux compactifications, this prop-

erty is lost in the presence of the nonperturbative effects that can stabilize the Kähler

moduli. A D3-brane at a generic point in such a compactification is non-supersymmetric,

and will generally be driven to a vacuum on which supersymmetry is restored.

We studied the general equations for supersymmetric vacua in a moduli-stabilized

compactification, and then enumerated supersymmetric vacua in the explicit example of

the S3 at the tip of the warped deformed conifold, for various configurations of the wrapped

D7-branes that generate the nonperturbative superpotential. We found examples in which

the D3-brane vacua had real dimension two, one, and zero, and we argued that the last of

these is the generic result in a compact Calabi-Yau. We also demonstrated that D3-branes

are confined by nonperturbative forces to the same loci as the D3-branes, preserving the

usual exit from brane/antibrane inflation.

Finally, we asked whether the flat angular directions associated with continuous D3-

brane moduli spaces could be relevant in D-brane inflation, as a D3-brane moving along

such an angular direction under the influence of a weak Coulomb force might be expected

to give rise to inflation. We showed that this is not possible because – despite the naive

flattening of the potential by the warp factor – the canonical field distance along the angular

directions becomes exponentially small. Thus, angular motion of a D3-brane does not give

rise to prolonged inflation.
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A. Coordinates on the deformed conifold

Here we collect a few facts concerning the various coordinates parameterizing the deformed

conifold. It is defined via the equation

4∑

A=1

(zA)2 = −2(w1w2 − w3w4) = ǫ2 , (A.1)

and the D7-brane embeddings we use are given in terms of one or the other of these sets of

coordinates. These coordinates can be related to coordinates on the S3 at the bottom of

the throat as follows. (We follow [17] with some modifications to their notation.) Define

the matrix W as

W ≡ LW0R
† , W0 ≡

(
ǫ/
√

2
√

r3 − ǫ2

0 − ǫ/
√

2

)
, (A.2)

where L,R are SU(2) matrices parameterized by three Euler angles each. (We are using

the standard r-variable on the conifold, related to that in [17] by r = (rthere)
2/3.) We

choose the following convention,

W =

(−w3 w2

−w1 w4

)
= − 1√

2

(
z3 + iz4 z1 − iz2

z1 + iz2 − z3 + iz4

)
, (A.3)

where we have chosen the w’s so as to agree with (32)-(35) of [9] when we use the param-

eterization of Euler angles given in (2.24)-(2.25) of [17]. One indeed finds that

det W = w1w2 − w3w4 = −1

2

4∑

A=1

(zA)2 = −1

2
ǫ2 , (A.4)

as required. At generic r > ǫ2/3, one of the six Euler angles in L and R is redundant, and the

remaining five along with r parameterize the deformed conifold. For r ≫ ǫ2/3 the deformed

conifold is well-approximated by the singular conifold, with the angles parameterizing T 1,1

and with the metric (2.10).

The S3 is at r = ǫ2/3, where W0(r = ǫ2/3) ∝ σ3. At this point three of the six

angles become redundant. The matrix T ≡ −
√

2
ǫ Wσ3 turns out to be an element of SU(2)

(the minus sign is just for convenience), and its three independent angles can be used to

parameterize the S3. Let the parameterization be

T ≡
√

2

ǫ

(
w3 w2

w1 w4

)
=

(
ei(ψ+φ)/2 cos θ/2 iei(ψ−φ)/2 sin θ/2

ie−i(ψ−φ)/2 sin θ/2 e−i(ψ+φ)/2 cos θ/2

)
, (A.5)

– 26 –



J
H
E
P
0
9
(
2
0
0
7
)
1
2
1

which is the standard Euler angle presentation of angles {ψ, θ, φ} on S3 with the associated

metric (2.13). (These angles are implicitly related to those of the approximate T 1,1 at

r ≫ ǫ2/3, but we will not need to work out this relation.) We note that on the S3, the wi

obey nontrivial relations:

w1 = −w2 , w3 = w4 . (A.6)

One may furthermore show using (A.3) that the S3 angles are related to the zA by

z1 = ǫ sin
θ

2
sin

ψ − φ

2
, z2 = ǫ sin

θ

2
cos

ψ − φ

2
, (A.7)

z3 = ǫ cos
θ

2
cos

ψ + φ

2
, z4 = ǫ cos

θ

2
sin

ψ + φ

2
.

We see that in this case, the S3 is a real slice of each zA coordinate.

B. D3-D3 potential in the deformed conifold

The potential between an antibrane located at the tip of the deformed conifold (KS throat)

and a brane located at a different coordinate value in the throat can be found by calculating

the energy of the D3-brane in a background geometry perturbed by a D3-brane.

In this appendix we compute the potential between a D3-brane at the tip of the

deformed conifold and and a D3-brane at or near the tip by considering the leading back-

reaction of the D3-brane on the background. The metric in this region, τ ≈ 0, is approxi-

mately (2.16), which is simply that of R
3 × S3 up to an overall factor of ǫ4/3; we use ~τ to

denote a vector (τ,Ω2) on R
3 and Ω for the three coordinates on S3.

Adding a D3-brane at position ~y1 = (~τ1,Ω1) on the R
3 × S3 preserves the imaginary

self-dual conditions (2.7), and modifies Φ+ to

Φ−1
+ = (Φ−1

+ )0 + φ−1
+ , (B.1)

where (Φ−1
+ )0 is the background value (2.11), and following equation (2.5) φ−1

+ solves

− ∇̃2 φ−1
+ = 8π4gs

δ6(y − y1)√
g̃6

. (B.2)

We define g0
mn ≡ ǫ−4/3g̃mn as the standard metric on R

3 × S3,

g0
mndymdyn = d~τ2 + dΩ2

3 , (B.3)

in terms of which (B.2) becomes

−∇2
0 φ−1

+ =
8π4gs

ǫ8/3

δ6(y − y1)√
g0
6

≡ C δ6(y − y1)√
g0
6

. (B.4)

We thus see that 1/(Cφ+) is a Green’s function G on R
3 × S3,

∇2
0 G(|~τ − ~τ1|,Ω − Ω1) = −δ3(~τ − ~τ1)δ

3(Ω − Ω1)√
g0
6

. (B.5)
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Since the Green’s function should only depend on the separation between the coordinates,

we will take the following separable ansatz with ρ ≡ |~τ − ~τ1| and ∆Ω ≡ Ω − Ω1,

G(ρ,∆Ω) =
∑

L

AL(Ω1)gL(ρ)Y{L}(Ω) (B.6)

where the functions satisfy the following differential equations away from ρ,∆Ω = 0,

∇2
R3gL(ρ) + k2

LgL(ρ) = 0 (B.7)

∇2
S3Y{L}(Ω) +

L(L + 2)

R2
S3

Y{L}(Ω) = 0, (B.8)

with k2
L = −L(L+ 2), L ∈ Z. The solutions to the three-sphere Laplace equation eq. (B.5)

are hyperspherical harmonics, which have the following useful properties [28],

∫
Y ∗
{L}(Ω)Y{L}(Ω)dΩ = δ{L},{L′} (B.9)

∑

{L}
Y ∗
{L}(Ω1)Y{L}(Ω2) = δ(D−1)(Ω1 − Ω2) (B.10)

∑

[L]

Y ∗
{L}(Ω1)Y{L}(Ω2) =

2L + 1

4πD/2
Γ(D/2 − 1)C

D/2−1
L (cos α) (B.11)

where the first line is the orthogonality of the functions, the second line is completeness, and

the third line is the generalized addition theorem for hyperspherical harmonics with α the

angle between the two vectors with angles Ω1 and Ω2 on the three-sphere, L = L+(D−3)/2.

By {L} we mean the set of all angular quantum numbers, by [L] we mean only secondary

angular quantum numbers, and by L we mean the primary angular quantum number

appearing in the differential equation. For example, for D = 3 we have {L} = {ℓ,m},
[L] = m and L = ℓ. The functions Cα

n are Gegenbauer polynomials.

The R
3 differential equation eq. (B.7) is the well-known Helmholtz equation, with

Green’s function solution

gL(ρ) =
eikLρ

4πρ
. (B.12)

The coefficients of the expansion eq. (B.6) can be found by integrating across the angular

part of the delta function argument, which gives the full solution,

G(ρ,∆Ω) =
∑

{L}

eikLρ

4πρ
Y{L}(Ω)Y ∗

{L}(Ω1)

=
1

16π3ρ sin(∆Ω)

∑

L

(2L + 1)eikLρ sin ((L + 1)∆Ω) , (B.13)

where the addition theorem eq. (B.11) was used to make the dependence on ∆Ω explicit.

Note that

C1
L(cos(∆Ω)) =

sin((L + 1)∆Ω)

sin(∆Ω)
. (B.14)
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For small ∆Ω, only the large L terms in the sum contribute, so we can take the approxi-

mation kL = i
√

L(L + 2) ≈ iL. The sum eq. (B.13) can now be done in closed form and

becomes

G(ρ,∆Ω) =

(
e2ρ − 1

)
/ρ

32π3 (cosh ρ − cos(∆Ω))2
. (B.15)

It is straightforward to see that eq. (B.15) reduces to the flat space limit for ρ ≪ 1, ∆Ω ≪ 1,

G(ρ,∆Ω) ≈ 1

4π3(ρ2 + ∆Ω2)2
. (B.16)

Thus we obtain the perturbation φ−1
+ = CG. The potential for the brane/antibrane system

is then TD3Φ+ (2.22) with Φ+ given by (B.1), which becomes to leading order at the tip,

VDD = 2TD3 a4
0

(
1 − 4πgs

R4
S3

1

(ρ2 + (∆Ω)2)2
+ . . .

)
, (B.17)

with R2
S3 ≡ gsM .

C. Off-tip SUSY vacua for Ouyang embeddings

We saw in section 4.3 that the Ouyang type of embeddings

f = wi − µ (C.1)

do not admit supersymmetric vacua for D3-branes at the tip of the deformed conifold.

There generically are, however, supersymmetric vacua off the tip, as we now demonstrate.

We keep the gauge choice (4.2) of eliminating w1, and consider the Ouyang embed-

ding (C.1) with i = 2. Clearly, ∂w3
f = ∂w4

f = 0, so we must have

∂3

(
ζ +

a

3
k
)

=
a

3
∂r3k

(
w4

w2
w1 + w3

)
= 0 (C.2)

∂4

(
ζ +

a

3
k
)

=
a

3
∂r3k

(
w3

w2
w1 + w4

)
= 0 . (C.3)

First we note that ∂r3k 6= 0 in general (6.3). One way of satisfying these relations is with

|w1|2 = |w2|2 and w3 = −w4w1/w2; this corresponds to the tip. However, they may also

be solved by

w3 = w4 = 0 . (C.4)

This locus intersects the tip, but extends off it; it is one-complex-dimensional, parame-

terized by w2 6= 0, while its intersection with the tip is |w2|2 = ǫ2/2, which is one-real-

dimensional.

Choosing the constraint (C.4) allows us to satisfy ∂w3
k = ∂w4

k = 0 without imposing

∂w2
k = 0, which would lead to no solution. The final vacuum equation is

∂w2

(
ζ +

a

3
k
)

= − 1

n(w2 − µ)
+

a

3
∂r3k

(
−w1

w2
w1 + w2

)
= 0 . (C.5)
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We may use (C.4) and the conifold equation, which becomes w1 = −ǫ2/(2w2), to obtain

w2

w2 − µ
= F (|w2|2)

(
|w2|2 −

ǫ4

4|w2|2
)

. (C.6)

Here F (|w2|2) is a real function, consisting of real coefficients times ∂r3k, which is evaluated

as a function of |w2|2. Thus since the right-hand-side is real, we must require µ/w2 to be

real as well. Defining µ ≡ meiχ with m > 0, and w2 ≡ weiδ , we impose this by requiring

δ = χ, while allowing the real w to take either sign. Hence (C.6) becomes

4w3 = (w − m)F (w2)(4w4 − ǫ4) . (C.7)

This equation is in general a polynomial of odd order in w; consequently we expect at least

one real solution for w, though in general there may be discretely many. Hence we indeed

expect to find off-tip vacua for the Ouyang embedding; the solutions would only lie on the

tip for the special value w = ǫ/
√

2, which one can see by inspection is not a solution since

the right-hand-side vanishes, consistent with the analysis of section 4.3.

Further investigation of these vacua would be interesting. In this appendix we have

considered the case of D3-branes; D3-branes could also be considered, but in that case the

Coulomb force drawing the brane to the bottom of the throat would be another factor in

the total potential. In addition, the local dynamics of branes in the vicinity of these vacua

are unexplored; these fascinating questions are beyond the scope of this work.
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G. Curio, A. Klemm, D. Lüst and S. Theisen, On the vacuum structure of type-II string

compactifications on Calabi-Yau spaces with H-fluxes, Nucl. Phys. B 609 (2001) 3

[hep-th/0012213];

K. Becker and M. Becker, Supersymmetry breaking, M-theory and fluxes, JHEP 07 (2001)

038 [hep-th/0107044];

S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB

orientifold, JHEP 10 (2003) 007 [hep-th/0201028].

[5] G. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-th/9812483].

[6] S.H.S. Alexander, Inflation from D-D̄ brane annihilation, Phys. Rev. D 65 (2002) 023507

[hep-th/0105032];

G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, hep-th/0105203;

C.P. Burgess et al., The inflationary brane-antibrane universe, JHEP 07 (2001) 047

[hep-th/0105204].

[7] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240].

[8] S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055].

[9] D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped

D-branes, JHEP 11 (2006) 031 [hep-th/0607050].

[10] C.P. Burgess, J.M. Cline, K. Dasgupta and H. Firouzjahi, Uplifting and inflation with D3

branes, JHEP 03 (2007) 027 [hep-th/0610320].

[11] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[12] O. Aharony, Y.E. Antebi and M. Berkooz, Open string moduli in KKLT compactifications,

Phys. Rev. D 72 (2005) 106009 [hep-th/0508080].

[13] O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane

worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123].

[14] O.J. Ganor, A note on zeroes of superpotentials in F-theory, Nucl. Phys. B 499 (1997) 55

[hep-th/9612077].
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